Oxidative Stress and Autism

Oxidative stress, defined as an imbalance between the production of reactive oxygen species (ROS) and the body’s ability to detoxify these chemicals or repair the damage caused by them, has been demonstrated in the peripheral tissues of children with autism. Increased nitric oxide levels in red blood cells and higher antioxidant enzyme activity have been reported in autistic patients. Higher plasma and red blood cell levels of pro-oxidant nitric oxide have been documented in autistic individuals relative to neurotypical children. Two independent reports document that the antioxidant enzymes, glutathione peroxidase and superoxide dismutase, are lower in autistic children relative to neurotypicals. Finally, evidence for chronic brain inflammation, and increased lipid peroxidation and reduced antioxidant activity in autistic children has been recently reported.

Chemically, oxidative stress is associated with increased production of oxidizing species or a significant decrease in antioxidant defenses. Glutathione is a cys-containing tripeptide that serves as the primary determinant of redox status (i.e., the transfer of electrons between molecules) in all human cells. Significantly lower levels of glutathione peroxidase, an antioxidant enzyme, and plasma glutathione, as well as higher ratios of oxidized glutathione to reduced glutathione, have been reported in autistic children and indicate that a disruption in antioxidant defense mechanisms may be associated with the disorder. If glutathine synthesis is inherently limited in autistic children, it could provide a biochemical explanation for the increased sensitivity to infections, gastrointestinal pathology, impaired detoxification, and neurologic pathology that are associated with both glutathione depletion and the autistic phenotype.

The brain is particularly vulnerable to oxidative stress during early development because it has low levels of antioxidants, high-energy requirements, and a high fat and iron content. In effect, the brain utilizes 20% of oxygen consumed by the body yet comprises only 2% of body weight. High-energy demands from oxidative metabolism plus a high concentration of polyunsaturated fatty acids and low antioxidant capacity is thought to render the brain more vulnerable to oxidative damage than most organs. Astrocytes, a supporting cell in the brain, serve as reservoirs for glutathione, and provide the cysteine necessary for thiol metabolism in human neuronal cells. Postmortem immunohistochemical studies have demonstrated that oxidative damage, evidenced by lipid modification, is localized primarily in the white matter of patients with autism, suggesting that axons may be the sites of primary oxidative damage within the brain of these individuals. This evidence is particularly relevant to the global underconnectivity deficits demonstrated in ASD, and may account for these white matter changes from a molecular perspective.

The reality for thousands of parents of autistic children is that medication options for their autistic children are extremely limited, often not effective, and may be associated with unwanted or toxic side-effects; e.g., weight gain with risperdal or liver toxicity with other psychotropic drugs. As a result, many primary care providers who see large number of autistic children have begun to recommend a variety of nutritional supplements and alternative treatments. Many of these interventions are difficult to implement in autistic children because of sensory issues and obsessive-compulsive behaviors that manifest as rigid and self-limited diets.

My group concluded a study using intravenous glutathione to see whether this therapy would alter plasma cytokine expression and improve behavior in children with autism.
Our data indicate that symptom severity and plasma cytokine levels do not significantly differ between autistic children who receive either intravenous placebo or glutathione administration. Exogenous administration of glutathione has been shown to have a very short half-life in human plasma, with rapid elimination and total clearance within approximately 10 minutes. Thus, one possibility as to why cytokine expression levels were not affected by exogenous glutathione administration in this study could be that the tri-peptide was simply unable to permeate cell membranes due to it being metabolized so quickly within the bloodstream.


5 Respuestas a “Oxidative Stress and Autism

  1. I often mentioned problems with breathing. Do you think this could cause «oxidative stress»? How about constant dehydration?

    I already mentioned that I temporarily treat my Asperger’s with electrolyte powder.

    Me gusta

  2. I’m interested in your thoughts regarding the possibility of an interplay between an increase in oxidative stress in the prenatal environment could lead to your primary area of interest, dysplasia and the other assorted abnormal brain structures?

    Of particular interest to the oxidative stress angle:

    1) A relationship between maternal CRP and risk autism diagnosis that follows a dose curve (http://www.ncbi.nlm.nih.gov/pubmed/23337946)

    2) Two DBPC studies finding N-acyltcysteine (a powerful anti-oxidant) as an effective supplement / adjunct for treatment. (http://www.ncbi.nlm.nih.gov/pubmed/23886027 / http://www.ncbi.nlm.nih.gov/pubmed/23821414)

    3) With a little looking, you can find a range of animal studies on the effect of prophylactic NAC administration and ablation of effect of maternal inflammatory challenge. This raises the *possibility* of altering neurodevelopment in a way consistent with the goal of ‘preventing’ autism, though I think the reality would be more like changing *lots* of stuff. I doubt we are wise enough to separate the good from the not so good.

    Me gusta

    • I am interested in the role of oxidative stress in the prenatal environment. The effects on the fetus should be magnified. Unfortunately almost any type of insult or pathogen could theoretically increase the oxidative stress. Congenital cytomegalovirus infection and cocaine taken during gestation could both provide both provide for the same level of oxidative stress. I am somewhat worried that treating oxidative stress would approach some of the symptoms of the condition rather than the real cause that engendered the insult. Probably akin to giving tylenol during a fever without treating the underlying infectious agent.

      Me gusta

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.